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Discrete stochastic model for self-renewal and differentiation of progenitor cells
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We propose a discrete model for self-renewal and differentiation of hematopoietic stem cells based on the
notion that, in a favorable environment, the commitment of the cells to a particular pair of progeny is a
stochastic event with the possibility of either self-renewal or differentiation. Regulatory mechanisms are
incorporated into the model, as is diffusion of the cytokines that carry the signals for such mechanisms. The
model can produce chaotic states, and is shown to be capable of predicting some key features of the experi-
mental data]S1063-651X97)50703-3

PACS numbdss): 87.10+€, 87.22:--q

Dynamical processes in biological systems are some afytokine interactiong17]. This spatial organization and its
the most complex phenomena in natyig. Traditionally, average productivity are governed by the interactions be-
differential equations of population dynamics have been usetiveen various components, which also determine the fate of
[2] to model them. Such models provide information abouta stem cell.
the average properties, but cannot provide any insight into We consider a lattice in which a randomly selected frac-
the effect of fluctuations and the spatial structure of the systion f; of its sites are occupied by the cytokines, a fraction
tems on the properties of biological phenomena, whereak, represents the stem cells, another fractigrrontains the
such factors play a key role in the dynamics of the phenomstromal cells, and the remaining fractidn=1—(f,+f,
ena. Most appropriate for taking into account the effect of+ f3) is the ECM. Each fractiod; is divided into four dif-
the fluctuations and the spatial structure of the environmerfierent subfractions;; . For example, the cytokines represent
are discrete or cellular automata models, in which a latticdiological materials that favor the production and/or prolif-
site can take on a small number of states, and its evolution &ration of various types of cells. We assume that a randomly
the next time step depends on its present state and the engielected fractiory,, of the cytokine sites favor proliferation
ronment around it. A few biological phenomena, such as thef the erythroid(E) cells, a fractiong,, favors the mega-
immune response, have already been modg3ed’] using  karyocytes (Megs, another fraction g,;3 favors the
such models. An important and unsolved task is the develgranulocyte-macrophagéGM) lineage, and the remaining
opment of a discrete model for predicting self-renewal andraction g,, favors the self-renewal of the stem cells. Thus,
differentiation of progenitor cells, such as the bone marrowdue to the complexity of bone marrow, the parameter space
stem cells. Although several models have already been def the model is quite large. But the values that we use for
veloped([8-12], they are too simple and usually take into f;’s and g;;’s are biologically reasonable and believed to
account only one specific aspect of the problem, and thueepresent a typical bone marrow. For example, the stem cells
they are not general enough, nor do they contain all the esrave highly specific homing properties, self-renewal poten-
sential ingredients of the phenomenon, to be useful. In thisial and multilineage differential capability. However, under
paper we develop a discrete model which takes into accoumtormal conditions, only a small fraction of such cells enter
the effect of the most important factors that influence selfthe cell cycle that lead to the daily production of billions of
renewal and differentiation of hemapoietic stem cells. Ourend-stage mature hematopoietic cells.
paper’'s goal is to study théynamicsof self-renewal or dif- It has been proposgd 7], based orin vivo andin vitro
ferentiation of the stem cells; thespatial distribution is the  studies, that the commitment of a stem cell to a particular
subject of a separate padds3], and is not considered here. pair of progeny of given potentials is a random event, and

The bone marrow is divided into irregular and intercon-thus, at the moment of commitment, there is the possibility
nected regions by bone trabeculae, and consists of a complexf either self-renewal or differentiation into new types of
hematopoietic cellular component that continuously undereells. However, the fate of a stem cell is influenced by the
goes self-replication and differentiation processes. The hesnvironment around it, with the cytokine, the ECM, and the
matopoietic component is supported by a microenvironmenstromal cells all playing a role. Thus we assume that a stem
composed of vascular structures, stromal cells, and a coneell commits itself only if the environment around it is fa-
plex extracellular matri{ECM). The stromal cells are the vorable, which is an environment that contains at least three
main generators of the ECM, and along with the accessorgites one each with the cytokine, the ECM, and a stromal
cells (such asT-lymphocytes and monocyteare involved  cell. We restrict the environment around a stem cell to be the
[14] in the production of the cytokines. The cytokines areset of its nearest-neighbor sites. It is not difficult to expand
soluble substrates that play a key role in the regulation ofhis set and include the next-nearest neighbors, the third-
hematopoiesis by demonstrating stimulatory or inhibitory ef-nearest neighbors, and so on. Thus, at each time step, we
fects on then{15,16. The bone marrow provides a proper decide how a stem cell evolves by checking the environment
spatial organization for cell-cell, cell-matrix, and cell- around it. If it is unfavorable, nothing will happen to the
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stem cell; otherwise the stem cell evolves stochastically: it 104
differentiates into an E cell, a GM cell, or the Megs, or it 42
self-renews, with an evolution probability, proportional to

the total number of the nearest-neighbor sites that contain the
cytokine, the ECM, and stromal cells that favor the produc- ;::
tion of the four types of cell. If a stem cell does evolve, its ©
site is filled with another stem cell, so that the fraction of the % 41.96}
stem-cell sites is constant.

Once all the stem-cell sitdSC9 are checked, the spatial
organization of the system evolves. Normally, the spatial dis-
tributions of the ECM, the stromal and the stem cells vary
with time very slowly, whereas, comparatively speaking, the  41.92
cytokines diffuse relatively fast in the bone marrow, and re-
distribute themselves in the system. We have recently shown . . .
[13] that, diffusion of the cytokines is a crucial factor in the 25 2,55 26 2.65 2.7 x10*
development of the spatial structure of the bone marrow. Time Step
Thus, at each time step, after checking the SCS, we allow the
cytokines to diffuse in the lattice, but do not change the
spatial distributions of the other constituents of the system. 2
The diffusion is simulated by a random walk: We consider a
cytokine sitel, pick one of its nearest neighbgrat random,
and move the cytokine tp, unlessj is occupied by a stem
cell. Diffusion and redistribution of the cytokines change the
environment around a stem cell, and thus an unfavorable
environment can become favorable as the system evolves.
Once diffusion of all the cytokines is complete, the process
time is increased by one unit. The environment around the
SCS is examined again for differentiation or self-renewal,
the cytokines are allowed to diffuse again, the process time is
increased by one unit, and so on. Each time a stem cell
differentiates into another celin units of that cell are pro- . . .
duced, and thus we measure the concentrations of the cells in 0 50 100 150 200
units of m. Time Interval

Two other important biological facts must be incorporated
in the model. One is that, after some time the produced cells FIG. 1. Time variationgin Monte Carlo stepsof the predicted
either leave the bone marrow, or die. Thus, we assume th&tmber of the GM cellstop) and its fractal analysigbottom
the average residence time of any cell in the system js Which shows, from topDo, Dj, andD.

i.e., the total concentration of any cell at any timés re-

duced by the amount of that cell that was produced at timéotal concentration over the subsequent time steps. This con-
t—7,. In general, the residence time of a cell in the bonecentration is monitored and compared with its average over
marrow is not necessarily the same as its average lifetimthe last 7, time steps. Once the concentration of the cell
7., but for the sake of simplicity we take = r,= r; for all becomes smaller than its average, the positive regulatory
the cells. The second biological fact is that bone marrowdeedback triggers the activation of the deactivated sites.
respond to negative or positive regulatory feedbacks. That isSince the presence of the newly produced cells does not af-
if at any time the concentration of a particular cell is toofect self-renewal or differentiation of the stem cells, we only
large, a negative regulatory mechanism is triggered that sugceep track of the time dependence of their concentrations,
presses temporarily the production of that cell, while a posi-and ignore their spatial distribution.

tive regulatory feedback triggers normal production of the Most of our simulations were carried out with 860x50

cell again, when its concentration becomes too small. Weubic lattices, which proved to provide statistically reliable
incorporate this fact into our model by calculating, at anyresults. The simulations parameters wége=0.45 (the cy-
time t, theaverageconcentration of each type of cell, where tokineg, f,=0.30 (the ECM), f;=0.15 (the stromal cells

the averaging is taken over thast 7, time steps. Then, if the andf,=0.10(the stem cells We also used;,= 0.28 for the
total concentration of a given type of cell at any titnés  production of the E cellsg;»,=0.7 for the GM cells,g;3
larger than its average over the last time steps, we sup- =0.01 for the Megs, and;,=0.01 for self-renewal of the
press its production temporarily. This is done by deactivatingstem cells, wheré=1—3 (see above These numbers are
all the cytokine, ECM, and stromal cells that favor the pro-believed to be a reasonable representation of an actual bone
duction of that cell. In the subsequent time steps, such sitemarrow[17].

are not counted for calculating the evolution probabifity Figure 1 shows results for the time dependence of the
of the stem cells. Since the concentration of a cell at any timeoncentrationC(t) of the GM cells for7;=5000 andr,

t is reduced by the amount that was produced at time=500. If we start the simulation with no GMs, then initially
t— 74, suppression of its production causes a reduction in itsheir concentration increases and attains a large maximum
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FIG. 2. Time variationgin Monte Carlo stepsof the absolute S a D, .
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relatively quickly, beyond which it reaches a quasi-steady U
state and varies with time around its steady-state value. Simi-
lar results are obtained for the other types of cells. If we use
other values of the fractiorfs andg;; in the simulations, we o e
obtain qualitatively similar results, except that, e.g., a larger 0 0.2 0.4 06 0.8 1
g;j implies larger concentrations of the cell typeand thus R
larger fluctuations in its concentration.

_The concentration fluctuations are reminiscent of a cha- . 3. The dependence of the generalized expon@y(s’,t)
otic state. To characterize the chaotic state, consider the dign r= 7, /r, for the Megs(top) and the GM cellgbottom.
crete time seriedC(i)}, i=1,2,...,such thatC(i) and
C(i+1) are related by the functional equatioB(i+1) g#1, andD;=[Z;Z;p;Inp;;]/In/ for q=1. D, character-
=h[C(i)]. We assume that the series has reached a quasies a chaotic systerfil8] such that forq=0, 1, and 2 it
steady state. An important feature of chaotic systems is theiepresents, respectively, the fractal, information, and correla-
memory loss, i.e., their behavior at any titnis independent tion dimensions of the data s&, is related to the scaling of
of that at much earlier time$18]. To characterize the the two-point correlation function, and fqr>2 D is related
memory loss, we first consider the values ©ft) in the to higher correlations in the data.
domain 1,2...,i, and divide the range of into N equal To calculateD 4(~/,t) we fix t and construct a table with
intervals with a length”’=[maxC)—min(C)J/N. Suppose N? elements forp;;(t). We then find the intervals to which
that p; is the probability that a value dE(t) is in theith  C(i) andC(i+t) belong. If, e.g., they belong to thth and
interval of the range ofC(t), and thatp;;(t) is the joint jth intervals, respectively, we add 1 to the corresponding
probability of findingC(i) in theith interval andC(i +1) in (i,j) cell in the table. Therp;;(t) is the value assigned to
thejth interval. For each time intervélwe calculate a set of each cell normalized by the total number of pairs
joint probabilitiesp;;(t) and compute time-dependent gener-[C(i),C(i +t)] that we find in the time series. By varying
alized exponentﬁ)q(/,t)zIn[EiEJ—pi“j (1/[(g—1)In/] for  from O to a given value, we calculai,(~,t). If C(i) and
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C(i+t) are not related to each other, thep(t)=pip;, I g/n? per day. Figure 2 shows his absolute neutrophil count
which case[18] Dy(/,t)=2Dy(~,0)=21im,_oD4(~,0).  (which are the end product of the GM celtsuring the first
We use this principle to characterize the degree of chaos it50 days of treatment, and its fractal analysis. These are
the time variations o€(t) and its memory loss, sindé8] if similar to those shown in Fig. 1, and in particular, the gen-
Dq(7,1) is doubled after a certain time, then the time serieseralized exponenbd,=1.6, similar to that of our model.
has lost its memory and behaves totally chaotically. How- However, the analysis of other ddf20] indicate that, the
ever, if Dq(/,t) is not doubled a$ becomes large, the time limiting values ofD, can vary between 0.5 and 1.7. In gen-
series is only partially chaotic. eral, the system’s behavior is controlled iayth 7; and 7. A
Figure 1 shows the results for the GM cef@milar re-  large, implies a more regulated system, singerepresents
sults are obtained for the Megs and the E gell$ie fractal the memory of the system also influences the behavior of
dimensions start with low values and, for short time inter-the system, since if the cells leave the system too soon, the
vals, increase. As the time intervafcrease D attains its  fluctuations in the concentrations increase. Thus, the limiting
asymptotic values. In particulal, starts out at a value of values ofD, may be controlled byR= 7,/7;. We show in
unity and for large time intervals reaches a value of aboufig. 3 the dependence @, on R for the GM cells and the
1.6, close to completely chaotic state. Howeg,does not  Megs. For low values oR, I.e., larger;s and smallr,s, the
attain values twice its initial values, characteristic of com-system is almost completely chaotic, whereas for large val-
pletely chaotic systems, since the system has memory and is ofR, i.e., large values of,, D, is small, in agreement
influenced by regulatory mechanisms, as we always calculateith the datg20].
the average cell concentrations over a finite time interval An important issue in most biological systerdd is the
75 to trigger the negative or positive regulatory feedbackrole of the competition between the regulatory mechanisms
mechanisms. and the stochasticity in the development of their temporal
How can the model be tested against experimental data@nd spatial organizations. Our model predicts that this com-
Because of the wide physiological variability from experi- petition is in fact the main controlling factor in the time
ment to experiment, absolute numbers of the produced cellsvolution of differentiation and proliferation of progenitor
are of limited quantitative value. A sensible test of the modekells by forcing the system to hover between chaos
is to see whether the data show trends toward a system wiftD,(/,t)=2D,(~,0)] and order [D4(/,t)=D4(/,0)].
a degree of chaos as predicted by our model. We considerMoreover, the intensity of chaos in biological systems can be
typical case study reported by Boulatial. [19], and com-  characterized by the generalized expond@yswhich, as we
ment on other possible scenarios. They reported on a patieshowed above, can be measured experimentally. Elsewhere
who was treated for embryonal rhabdomyosarcoma wittj13] we have shown that this competition also organizes the
bone marrow transplantation followed by administration ofspatial structure of bone marrow in a fractal manner with a
recombinant human granulocyte-macrophage colonywell-defined fractal dimension, thus leading to unified de-
stimulating factor(rHUGM-CSH on day 25 posttransplant scription of the spatial and temporal distributions of the cells
for a 28 day course of intravenous rHUGM-CSF at 250in bone marrow.
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