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Discrete stochastic model for self-renewal and differentiation of progenitor cells
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We propose a discrete model for self-renewal and differentiation of hematopoietic stem cells based on the
notion that, in a favorable environment, the commitment of the cells to a particular pair of progeny is a
stochastic event with the possibility of either self-renewal or differentiation. Regulatory mechanisms are
incorporated into the model, as is diffusion of the cytokines that carry the signals for such mechanisms. The
model can produce chaotic states, and is shown to be capable of predicting some key features of the experi-
mental data.@S1063-651X~97!50703-3#

PACS number~s!: 87.10.1e, 87.22.2q
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Dynamical processes in biological systems are some
the most complex phenomena in nature@1#. Traditionally,
differential equations of population dynamics have been u
@2# to model them. Such models provide information abo
the average properties, but cannot provide any insight
the effect of fluctuations and the spatial structure of the s
tems on the properties of biological phenomena, wher
such factors play a key role in the dynamics of the pheno
ena. Most appropriate for taking into account the effect
the fluctuations and the spatial structure of the environm
are discrete or cellular automata models, in which a lat
site can take on a small number of states, and its evolutio
the next time step depends on its present state and the
ronment around it. A few biological phenomena, such as
immune response, have already been modeled@3–7# using
such models. An important and unsolved task is the de
opment of a discrete model for predicting self-renewal a
differentiation of progenitor cells, such as the bone marr
stem cells. Although several models have already been
veloped @8–12#, they are too simple and usually take in
account only one specific aspect of the problem, and t
they are not general enough, nor do they contain all the
sential ingredients of the phenomenon, to be useful. In
paper we develop a discrete model which takes into acco
the effect of the most important factors that influence s
renewal and differentiation of hemapoietic stem cells. O
paper’s goal is to study thedynamicsof self-renewal or dif-
ferentiation of the stem cells; theirspatialdistribution is the
subject of a separate paper@13#, and is not considered here

The bone marrow is divided into irregular and interco
nected regions by bone trabeculae, and consists of a com
hematopoietic cellular component that continuously und
goes self-replication and differentiation processes. The
matopoietic component is supported by a microenvironm
composed of vascular structures, stromal cells, and a c
plex extracellular matrix~ECM!. The stromal cells are the
main generators of the ECM, and along with the access
cells ~such asT-lymphocytes and monocytes! are involved
@14# in the production of the cytokines. The cytokines a
soluble substrates that play a key role in the regulation
hematopoiesis by demonstrating stimulatory or inhibitory
fects on them@15,16#. The bone marrow provides a prop
spatial organization for cell-cell, cell-matrix, and ce
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cytokine interactions@17#. This spatial organization and it
average productivity are governed by the interactions
tween various components, which also determine the fat
a stem cell.

We consider a lattice in which a randomly selected fra
tion f 1 of its sites are occupied by the cytokines, a fracti
f 2 represents the stem cells, another fractionf 3 contains the
stromal cells, and the remaining fractionf 4512( f 11 f 2
1 f 3) is the ECM. Each fractionf i is divided into four dif-
ferent subfractionsgi j . For example, the cytokines represe
biological materials that favor the production and/or prol
eration of various types of cells. We assume that a rando
selected fractiong11 of the cytokine sites favor proliferation
of the erythroid~E! cells, a fractiong12 favors the mega-
karyocytes ~Megs!, another fraction g13 favors the
granulocyte-macrophage~GM! lineage, and the remaining
fraction g14 favors the self-renewal of the stem cells. Thu
due to the complexity of bone marrow, the parameter sp
of the model is quite large. But the values that we use
f i ’s and gi j ’s are biologically reasonable and believed
represent a typical bone marrow. For example, the stem c
have highly specific homing properties, self-renewal pot
tial and multilineage differential capability. However, und
normal conditions, only a small fraction of such cells en
the cell cycle that lead to the daily production of billions
end-stage mature hematopoietic cells.

It has been proposed@17#, based onin vivo and in vitro
studies, that the commitment of a stem cell to a particu
pair of progeny of given potentials is a random event, a
thus, at the moment of commitment, there is the possibi
of either self-renewal or differentiation into new types
cells. However, the fate of a stem cell is influenced by
environment around it, with the cytokine, the ECM, and t
stromal cells all playing a role. Thus we assume that a s
cell commits itself only if the environment around it is fa
vorable, which is an environment that contains at least th
sites one each with the cytokine, the ECM, and a strom
cell. We restrict the environment around a stem cell to be
set of its nearest-neighbor sites. It is not difficult to expa
this set and include the next-nearest neighbors, the th
nearest neighbors, and so on. Thus, at each time step
decide how a stem cell evolves by checking the environm
around it. If it is unfavorable, nothing will happen to th
R2111 © 1997 The American Physical Society
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R2112 55SAHIMI, MEHRABI, AND NAEIM
stem cell; otherwise the stem cell evolves stochastically
differentiates into an E cell, a GM cell, or the Megs, or
self-renews, with an evolution probabilitype proportional to
the total number of the nearest-neighbor sites that contain
cytokine, the ECM, and stromal cells that favor the prod
tion of the four types of cell. If a stem cell does evolve,
site is filled with another stem cell, so that the fraction of t
stem-cell sites is constant.

Once all the stem-cell sites~SCS! are checked, the spatia
organization of the system evolves. Normally, the spatial d
tributions of the ECM, the stromal and the stem cells va
with time very slowly, whereas, comparatively speaking,
cytokines diffuse relatively fast in the bone marrow, and
distribute themselves in the system. We have recently sh
@13# that, diffusion of the cytokines is a crucial factor in th
development of the spatial structure of the bone marr
Thus, at each time step, after checking the SCS, we allow
cytokines to diffuse in the lattice, but do not change t
spatial distributions of the other constituents of the syste
The diffusion is simulated by a random walk: We conside
cytokine sitei , pick one of its nearest neighborsj at random,
and move the cytokine toj , unlessj is occupied by a stem
cell. Diffusion and redistribution of the cytokines change t
environment around a stem cell, and thus an unfavora
environment can become favorable as the system evo
Once diffusion of all the cytokines is complete, the proce
time is increased by one unit. The environment around
SCS is examined again for differentiation or self-renew
the cytokines are allowed to diffuse again, the process tim
increased by one unit, and so on. Each time a stem
differentiates into another cell,m units of that cell are pro-
duced, and thus we measure the concentrations of the ce
units ofm.

Two other important biological facts must be incorporat
in the model. One is that, after some time the produced c
either leave the bone marrow, or die. Thus, we assume
the average residence time of any cell in the system ist r ,
i.e., the total concentration of any cell at any timet is re-
duced by the amount of that cell that was produced at t
t2t r . In general, the residence time of a cell in the bo
marrow is not necessarily the same as its average lifet
t l , but for the sake of simplicity we taket l 5t r5t1 for all
the cells. The second biological fact is that bone marro
respond to negative or positive regulatory feedbacks. Tha
if at any time the concentration of a particular cell is t
large, a negative regulatory mechanism is triggered that s
presses temporarily the production of that cell, while a po
tive regulatory feedback triggers normal production of t
cell again, when its concentration becomes too small.
incorporate this fact into our model by calculating, at a
time t, theaverageconcentration of each type of cell, whe
the averaging is taken over thelast t2 time steps. Then, if the
total concentration of a given type of cell at any timet is
larger than its average over the lastt2 time steps, we sup
press its production temporarily. This is done by deactivat
all the cytokine, ECM, and stromal cells that favor the p
duction of that cell. In the subsequent time steps, such s
are not counted for calculating the evolution probabilitype
of the stem cells. Since the concentration of a cell at any t
t is reduced by the amount that was produced at t
t2t1, suppression of its production causes a reduction in
it
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total concentration over the subsequent time steps. This c
centration is monitored and compared with its average ov
the last t2 time steps. Once the concentration of the ce
becomes smaller than its average, the positive regulat
feedback triggers the activation of the deactivated sit
Since the presence of the newly produced cells does not
fect self-renewal or differentiation of the stem cells, we on
keep track of the time dependence of their concentratio
and ignore their spatial distribution.

Most of our simulations were carried out with 50350350
cubic lattices, which proved to provide statistically reliab
results. The simulations parameters weref 150.45 ~the cy-
tokines!, f 250.30 ~the ECM!, f 350.15 ~the stromal cells!,
and f 450.10~the stem cells!. We also usedgi150.28 for the
production of the E cells,gi2.0.7 for the GM cells,gi3
.0.01 for the Megs, andgi4.0.01 for self-renewal of the
stem cells, wherei5123 ~see above!. These numbers are
believed to be a reasonable representation of an actual b
marrow @17#.

Figure 1 shows results for the time dependence of t
concentrationC(t) of the GM cells for t155000 andt2
5500. If we start the simulation with no GMs, then initially
their concentration increases and attains a large maxim

FIG. 1. Time variations~in Monte Carlo steps! of the predicted
number of the GM cells~top! and its fractal analysis~bottom!
which shows, from top,D0 , D1, andD2.



d
im
us

ge

ha
d

a
he

f
r

ela-
f

ing

irs
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relatively quickly, beyond which it reaches a quasi-stea
state and varies with time around its steady-state value. S
lar results are obtained for the other types of cells. If we
other values of the fractionsf i andgi j in the simulations, we
obtain qualitatively similar results, except that, e.g., a lar
gi j implies larger concentrations of the cell typej, and thus
larger fluctuations in its concentration.

The concentration fluctuations are reminiscent of a c
otic state. To characterize the chaotic state, consider the
crete time series$C( i )}, i51,2, . . . , such thatC( i ) and
C( i11) are related by the functional equation,C( i11)
5h@C( i )#. We assume that the series has reached a qu
steady state. An important feature of chaotic systems is t
memory loss, i.e., their behavior at any timet is independent
of that at much earlier times@18#. To characterize the
memory loss, we first consider the values ofC(t) in the
domain 1,2, . . . , i , and divide the range ofC into N equal
intervals with a lengthl 5@max~C!2min~C!#/N. Suppose
that pi is the probability that a value ofC(t) is in the i th
interval of the range ofC(t), and thatpi j (t) is the joint
probability of findingC( i ) in the i th interval andC( i1t! in
the jth interval. For each time intervalt, we calculate a set o
joint probabilitiespi j (t) and compute time-dependent gene
alized exponentsDq(l ,t)5 ln@( i( j pi j

q (t)#/@(q21)lnl # for

FIG. 2. Time variations~in Monte Carlo steps! of the absolute
neutrophil count@19# ~ANC! ~top! and its fractal analysis~bottom!.
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qÞ1, andD15@( i( j pi j lnpi j #/ lnl for q51. Dq character-
izes a chaotic system@18# such that forq50, 1, and 2 it
represents, respectively, the fractal, information, and corr
tion dimensions of the data set.D2 is related to the scaling o
the two-point correlation function, and forq.2Dq is related
to higher correlations in the data.

To calculateDq(l ,t) we fix t and construct a table with
N2 elements forpi j (t). We then find the intervals to which
C( i ) andC( i1t) belong. If, e.g., they belong to theith and
jth intervals, respectively, we add 1 to the correspond
~i , j ! cell in the table. Thenpi j (t) is the value assigned to
each cell normalized by the total number of pa
@C( i ),C( i1t)# that we find in the time series. By varyingt
from 0 to a given value, we calculateDq(l ,t). If C( i ) and

FIG. 3. The dependence of the generalized exponentsDq(l ,t)
on R5t2 /t1 for the Megs~top! and the GM cells~bottom!.
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C( i1t) are not related to each other, thenpi j (t)5pipj , in
which case@18# Dq(l ,t)52Dq(l ,0)52 liml →0Dq(l ,0).
We use this principle to characterize the degree of chao
the time variations ofC(t) and its memory loss, since@18# if
Dq(l ,t) is doubled after a certain time, then the time ser
has lost its memory and behaves totally chaotically. Ho
ever, ifDq(l ,t) is not doubled ast becomes large, the tim
series is only partially chaotic.

Figure 1 shows the results for the GM cells~similar re-
sults are obtained for the Megs and the E cells!. The fractal
dimensions start with low values and, for short time int
vals, increase. As the time intervalsincrease, Dq attains its
asymptotic values. In particular,D0 starts out at a value o
unity and for large time intervals reaches a value of ab
1.6, close to completely chaotic state. However,Dq does not
attain values twice its initial values, characteristic of co
pletely chaotic systems, since the system has memory a
influenced by regulatory mechanisms, as we always calcu
the average cell concentrations over a finite time inter
t2 to trigger the negative or positive regulatory feedba
mechanisms.

How can the model be tested against experimental d
Because of the wide physiological variability from expe
ment to experiment, absolute numbers of the produced c
are of limited quantitative value. A sensible test of the mo
is to see whether the data show trends toward a system
a degree of chaos as predicted by our model. We consid
typical case study reported by Bouladet al. @19#, and com-
ment on other possible scenarios. They reported on a pa
who was treated for embryonal rhabdomyosarcoma w
bone marrow transplantation followed by administration
recombinant human granulocyte-macrophage colo
stimulating factor~rHuGM-CSF! on day 25 posttransplan
for a 28 day course of intravenous rHuGM-CSF at 2
l.
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mg/m2 per day. Figure 2 shows his absolute neutrophil co
~which are the end product of the GM cells! during the first
150 days of treatment, and its fractal analysis. These
similar to those shown in Fig. 1, and in particular, the ge
eralized exponentD0.1.6, similar to that of our model.

However, the analysis of other data@20# indicate that, the
limiting values ofDq can vary between 0.5 and 1.7. In ge
eral, the system’s behavior is controlled bybotht1 andt2. A
larget2 implies a more regulated system, sincet2 represents
the memory of the system.t1 also influences the behavior o
the system, since if the cells leave the system too soon,
fluctuations in the concentrations increase. Thus, the limit
values ofDq may be controlled byR5t2 /t1. We show in
Fig. 3 the dependence ofDq on R for the GM cells and the
Megs. For low values ofR, i.e., larget1s and smallt2s, the
system is almost completely chaotic, whereas for large v
ues ofR, i.e., large values oft2, Dq is small, in agreemen
with the data@20#.

An important issue in most biological systems@1# is the
role of the competition between the regulatory mechanis
and the stochasticity in the development of their tempo
and spatial organizations. Our model predicts that this co
petition is in fact the main controlling factor in the tim
evolution of differentiation and proliferation of progenito
cells by forcing the system to hover between cha
@Dq(l ,t).2Dq(l ,0)# and order @Dq(l ,t).Dq(l ,0)#.
Moreover, the intensity of chaos in biological systems can
characterized by the generalized exponentsDq which, as we
showed above, can be measured experimentally. Elsew
@13# we have shown that this competition also organizes
spatial structure of bone marrow in a fractal manner with
well-defined fractal dimension, thus leading to unified d
scription of the spatial and temporal distributions of the ce
in bone marrow.
l.
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